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Abstract 

The need for intense muon beams for muon colliders 
[ 1] and for neutrino factories based on muon storage rings 
[2,3,4] leads to a concept of l-4 MW proton beams inci- 
dent a moving target that is inside a 20-T solenoid magnet, 
with a mercury jet as a preferred example. Novel technical 
issues for such a system include disruption of the mercury 
jet by the proton beam and distortion of the jet on entering 
the solenoid, as well as more conventional issues of mate- 
rials lifetime and handling of activated materials in an in- 
tense radiation environment. As part of the R&D program 
[5] of the Neutrino Factory and Muon Collider Collabo- 
ration, R&D effort related to targetry is being performed 
within the context of BK E951 [6], first results of which 
are discussed here and in other contributions to this confer- 
ence. 

1 THETARGETRYCONCEPT 

A muon collider [I] or a neutrino factory based on a 
muon storage ring [2,3,4] require intense beams of muons, 
which are obtained from the decay of pions produced in 
proton-nucleus collisions. To maximize the yield, pions 
of momentum near 300 MeV/c should be captured [7, 81. 
For proton energies above 10 GeV, the pion yield per unit 
of proton beam energy is larger for a high-2 target [7]. 
For proton beam energies in the MW range, beam heat- 
ing would melt or crack a stationary high-2 target [9], so 
a moving target must be used. A mercury jet target is the 
main focus of BNL E951 [6], although R&D is also being 
conducted on a carbon target option [2, 10, 111 as might be 
suitable for a low-energy proton source [12], and concep- 
tual studies have been carried out for rotating-band targets 
[ 13, 141, a tantalum/water target [ 151, and a liquid-lithium 
target [la. 

The low-energy pions are produced with relatively large 
angles to the proton beam, and efficient capture into a de- 
cay and phase rotation channel is obtained by surrounding 
the target with a 20-T solenoid magnet, whose field tapers 
down to 1.25 T over several meters [17, 181, as sketched in 
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Figure 1: Concept of targetry based on a mercury jet and 
proton beam at 100 mrad and 66 mrad, respectively, to the 
axis of a 20-T solenoid magnet. 

Fig. 1. See also Figs. 2 and 3 of [S]. Pion yield is maxi- 
mized with a mercury target in the form a l-cm-diameter 
cylinder, tilted by about 100 mrad with respect to the mag- 
netic axis. To permit the proton beam to interact with the 
target over 2 interaction lengths, the proton beam is tilted 
by 33 mrad with respect to the mercury jet axis. 

The use of a mercury jet target raises several novel is- 
sues. The rapid energy deposition in the mercury tar- 
get by the proton beam leads to intense pressure .waves 
that can disperse the mercury [6, 19, 20, 21, 22, 231. 
Further, as the mercury enters the strong magnetic field 
eddy currents are induced in the mercury, and the Lorentz 
force on these currents could lead to distortion of the jet 
[6,23,24,25,26,27,28]. On the other hand, the magnetic 
pressure on the mercury once inside the solenoid will damp 
mechanical perturbation of the jet [20,29]. 

To address these issues an R&D program is now under- 
way. 



2 THE TARGETRY R&D PROGRAM 

In the USA, R&D on targetry for a neutio factory and 
muon collider has been formalized as BNL experiment 951 
[6]. This project maintains close contacts with related ef- 
forts in Europe [30] and in Japan [3 11. 

The broad goal of E951 is to provide a facility that can 
test all the major of a liquid or solid target in intense pro- 
ton pulses and in a 20-T magnetic field. A sketch of the 
eventual facility is shown in Fig. 2. 

Figure 2: Sketch of the full configuration of BNL E95 1, the 
targetry R&D facility. 

Present activities in E951 focus on the interaction of in- 
tense proton pulses with targets in zero magnetic field. Eu- 
ropean targetry studies presently emphasize the interaction 
of mercury jets with a magnetic field, the operation of rf 
cavities near high-power targets [32], and evaluation of tar- 
get materials [33]. 

2.1 Mercury Target Studies 

The present R&D program on mercury jets is an out- 
growth of work at CERN in the 1980’s in which a prototype 
mercury jet was prepared (Fig. 3), but was never exposed 
to a beam. 

High-speed photographs of mercury jet target for CERNPS-AA (laboratory tests) 

4.000 frames per second. Jet speed: 20 ms-I. diameter: 3 mm. Reynold’s Number’~lOO.000 

a. Paxd 

Figure 3: Photographs of a 3-mm-diameter mercury jet 
(C.D. Johnson, 1988). 

Experiment 951 is conducted in the A3 beamline of the 
BNL AGS [34] into which a single bunch of up to 5 x 10 I2 
24-GeV protons can be extracted and brought to a focus 
as small as 0.6 x 1.6 mm2. The dispersal of both static 

and moving mercury targets by the proton beam was ob- 
served via two high-speed cameras using shadow photogra- 
phy with a laser diode [35]. The principal results obtained 
thus 61 in 2001 are summarized elsewhere [36, 371. Fig- 
ure 4 shows results from a static mercury target. Dispersal 
velocities of up to 50 m/s were observed. The air in the 
target cell slowed the droplet velocity by a factor of two 
over 10 cm. A key result from the jet studies was that the 
dispersal of mercury by the proton beam was confined to 
that part of the jet directly intercepted by protons. 

Figure 4: Exposures of 25 ps at t = 0, 0.5. 1.6, 3.4 msec 
after a pulse of 2 x 1Ol2 protons interacted with a “thimble” 
of mercury 1.0 cm in diameter and 1.5 cm deep. 

Thus, it appears that the dispersal of mercury by a proton 
beam is dramatic, but not violent, and that the dispersal will 
be a relatively modest issue for a target facility that operates 
at 15 Hz [38]. 

2.2 Solid Target Studies 
E951 included exposures of several solid targets to the 

proton beam, using fiberoptic strain sensors with 500 MHz 
bandwidth to characterize the transient response of the tar- 
gets to the pressure waves induced by beam energy depo- 
sition [39]. As expected, a carbon-carbon composite tar- 
get with thermal expansion coefficient of less that 10m6/K 
showed much less strain than an ATJ graphite target. 

The issue of the rate of sublimation of carbon targets 
at the elevated temperatures (> 19OOC) caused by expo- 
sure to a 1-MW beam is under continuing laboratory study. 
Calculations indicate that a helium atmosphere cangreatly 
extend the operation life of a carbon target against sublima- 
tion [40]. 
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